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Abstract

Modern audio production relies heavily on realtime audio synthesis. However, accelerating audio synthesis far
beyond realtime speeds has a significant role to play in advancing intelligent audio production techniques. Fast
synthesis methods have been used to generate useful datasets, implement audio matching procedures for automatic
sound design, and infer synthesis parameters for real-world sounds. In this paper, we present SYNTHAX, a fast
virtual modular synthesizer written in JAX. At its peak, SYNTHAX generates audio over 80,000 times faster than
realtime, and significantly faster than the state-of-the-art in accelerated sound synthesis. We present SYNTHAX as
an open sourcnd easily extensible API to stimulate and support applications of fast sound synthesis at scale.

1 Introduction

Realtime sound synthesis is a cornerstone of modern audio
production. It affords producers the ability to tweak sounds
and hear them change; a loop of perception and action that
results in diverse auditory creations to support music, film, and
other media. Modern audio technologies increasingly employ
techniques that benefit from automatically tweaking synthe-
sizers, such as optimization and machine learning. In these
scenarios, the ability to rapidly tweak sounds and compute with
them at scale offers a vast space of opportunities for designing
and developing powerful new audio technologies. As such,
fast sound synthesis can be an essential tool. We define faster-
than-realtime as generating more than one second of audio per
second of processing time. In particular, we deal with cases
where the processing is a lot faster than this (i.e. >1000x).

In this paper, we introduce SYNTHAX, a fast modular
synthesizer written using the JAX [[1]] framework for accelerated
and differentiable computing. By offering synthesis at speeds
that peak at over 80,000 x realtime, SYNTHAX provides a high-
performance, flexible virtual modular synthesizer in the form of
an expanding and easily extensible open source Python library.
Additionally, we implement an API based on forchsynth [2], a
recent high-performing synthesizer written in PyTorch, to allow
for an easy substitution for end-users. Our results in this paper
show considerable speedups over forchsynth, ranging up to just
under 9x depending on the hardware configuration and batch
size.

Ihttps://github.com/PapayaResearch/synthax

2 Related Work

2.1 Programmatic Synthesis

One important element of SYNTHAX is allowing programmatic
control of a synthesizer. Indeed, many software synthesizers
are ultimately written to be controllable by other software, such
as VST plugins by DAW automation. However, not many syn-
thesizers are designed to be fully specifiable and controllable in
code written by end-users. Some well-known options include
Surge X and forchsynth [2]. The former is written as a plu-
gin that offers an API, and the latter is written as a library for
non-realtime synthesis. We implement ours following the latter
example, which means that there is not a direct application
of our method to realtime synthesis. However, since JAX [[1]
compiles code to XLA, it is likely possible to implement SYN-
THAX in a realtime synthesizer plugin to have it bridge these
two different approaches to programmatic synthesis.

2.2 torchsynth

Developed for audio synthesis, torchsynth [2] serves as a mod-
ular synthesizer that is capable of generating audio on a single
GPU at >16200x faster than realtime. It consists of a variety
of audio and control modules. The default synthesizer in forch-
synth is Voice, which the authors used to generate a dataset
containing a billion audio clips. As we detail later, we base our
API and implementation on forchsynth as it provides an existing
and familiar reference point. We also compare to torchsynth in
our experiments studying the performance of SYNTHAX.

Zhttps://surge-synthesizer.github.io/
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3 System Design

The design of the API is inspired by the inherent modularity
of hardware synthesizers. SYNTHAX leverages the power of
JAX [1]] to build on torchsynth [2]], which is a state-of-the-art
high-throughput synthesizer implemented in PyTorch to take
advantage of its accelerated computational routines. Maintain-
ing a similar API makes the transition for end-users seamless
without any major rewriting or learning curve.

rt jax
thax.config t SynthConfig

thax.synth rt ParametricSynth

config = SynthConfig(
batch_size=16,
sample_rate=44100,
buffer_size_seconds=4.0

synth = ParametricSynth (
config=config,
sine=1,
square_saw=1,
fm_sine=1,

fm_square_saw=0

key = jax.random.PRNGKey (42)

params = synth.init (key)

audio = jax.jit (synth.apply) (params)

Listing 1: Code snippet for generating audio with a Parametric-
Synth. This synthesizer supports a user-configured architecture,
in contrast to the Voice synthesizer which encodes a fixed topol-
ogy design (78 parameters). This allows control of the degrees
of freedom available to manipulate the sound synthesis.

Each module serves a different function but can be con-
nected together to create a synthesizer. SYNTHAX modules
mimic their counterparts in analog and digital synthesizers,
consisting of amplifiers, envelopes, filters, keyboards, low-
frequency oscillators (LFOs), mixers, and voltage-controlled
oscillators (VCOs). The output from these modules can repre-
sent audio signals or control voltages, depending on the mod-
ule’s intended function. Audio modules, such as VCOs, pro-
duce audio signals. Control modules, such as LFOs, produce
“control voltages” that modulate the parameters of other mod-
ules. The keyboard outputs parameters that are used as input
for other modules. All modules follow the Flax [3]] module sys-
tem known as Linen to organize the modules into independent
components. Figure [T]shows the structure of the API, where a
synthesizer consists of modules and a configuration.

In our implementation, we aim for allowing users flexibility
in how they specify synthesizers. Modules with parameters can
be initialized in a few different ways. If only initial values are
given, they are expected to be in human-readable (i.e. unnor-
malized, e.g. frequency in Hz) range within the default ranges
of the parameters. Alternatively, the modules also accept range
objects, which specify only a range within which parameter
values are initialized uniformly randomly. Finally, users can
also provide the initial values and ranges together as an object.
In all cases, the parameters store the values in the (normalized)
interval [0, 1].

In addition to the differences between SYNTHAX and forch-
synth that arise from JAX features such as easy and flexible
vectorization, parallelization, and just-in-time (JIT) compila-
tion, we introduce these additional features: a filter module,
currently containing a simple low-pass filter that can be shaped
by control modules; a parametric definition of a synthesizer
to easily explore different synthesizer topologies; functions to
write and load a synthesizer including its hyperparameters and
parameters, in the human- and machine-readable YAML for-
mat. This also means that synth specifications can, in principle,
be directly composed in YAML and loaded to a synth with a
matching parameter architecture.

We adhere to JAX’s explicit randomness handling in our de-
sign. JAX uses a pseudo-random number generator (PRNG), an
algorithm that produces sequences of numbers that approximate
true randomness given an initial key (i.e. value). Therefore,
users need to provide such random keys to their synthesizers.
Though this adds an extra consideration, it also ensures better
reproducibility. Listing[T] shows how to define a configuration,
instantiate a parametric synthesizer and, finally, synthesize au-
dio.

JAX supports a wide variety of hardware and leverages pow-
erful function transformations such as just-in-time compilation
(JIT), auto-vectorization, and hardware parallelism. We can
vectorize (jax.vmap) and parallelize (jax.pmap) in a single line
of code. It also conforms to the Single-Program, Multiple-Data
(SPMD) model, which means that the same computation for
different input data runs in parallel on multiple devices. In
order to maximize performance and throughput when using
JAX, SYNTHAX renders audio in batches.

Extending SYNTHAX can be done seamlessly due to its
modularity, since the API is designed to easily integrate other
synthesizers or modules. SYNTHAX joins the JAX ecosystem
and can be easily integrated with other well-known libraries
such as Optax [4]], evosax [3]], EvoJAX [6], and QDax [7].

4 Results

4.1 Performance Evaluation

First, we characterized the speed and memory performance
of SynthAX. We used torchsynth as a strong baseline to
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Figure 1: Structure of the API. We separate the synthesis modules into Python modules which group related elements. These
modules are shown in lower-case letters above the relevant classes. The class inheritance structure, which mirrors rorchsynth [2]],
is indicated by the TitleCase names. Inner boxes are subclasses of the larger boxes they are embedded in.

compare against, since it is the de facto state-of-the-art fast
synthesizer and can take advantage of similar hardware accel-
eration capabilities (e.g. GPUs). For both synthesis libraries,
we use the Voice synthesizer with 78 parameters. In our setup,
we computed the time needed to synthesize 100 batches of
sounds at different batch sizes (powers of 2 from 2 to 1024).
We randomized the synthesis parameters for each batch. As
torchsynth does, we also report the speed as compared with
realtime synthesis. We calculated this as

Num. Batches x Batch Size x Sound Duration
t

where ¢ denotes the time taken for one loop of 100 batches.
Finally, we also report memory usage in GB after each 100-
batch loop.

We report averages over 10 100-batch loops for all three
quantities (time, speed x realtime, and memory), to account
for variance. Additionally, we computed a full set of results
for a GPU and a CPU, although we expect GPUs to be the
primary usage platform. To account for the effect of JAX’s [1]]
JIT compilation, we produced one batch of sounds (for both
SYNTHAX and the forchsynth baseline) at the very beginning,
outside the evaluation loop. This is so that we measure the
typical performance, as the JIT compilation only needs to occur
once.

These results are given in Figure[2] We do not show error
bars as the results are generally stable, resulting in very small
variance. Overall, we see that SYNTHAX substantially out-
performs forchsynth on time-based metrics for both CPU and
GPU. At peak performance within this evaluation, SYNTHAX
shows more than 80,000 x realtime synthesis speed. SYNTHAX
shows a comparable memory utilization profile to forchsynth,

especially lower at higher batch sizes on GPU and CPU. We
disabled JAX’s memory preallocation for our experiments to
measure the real memory footprint.

For direct comparison, Figure 3| plots the speedup over
torchsynth. This is computed as the ratio of time taken to
synthesize 100 batches, computed per 100-batch loop, and then
averaged across the 10 runs. We provide min/max error bars to
show the full range. This figure shows that the speedups range
from just over 2x (some batch sizes on CPU and very large
batches on GPU) to almost 9x at the peak speedup level (batch
of 32 sounds on GPU).

4.2 torchsynth Replication

We replicated the examples from forchsynth [2]] for reproducibil-
ity. These include instantiating ADSR envelopes both randomly
and with set parameters, VCOs, LFOs, VCAs, mixers, and their
synthesizer architecture Voice. Figure ] shows some of the
resulting spectrograms considering different VCOs and setups
in torchsynth and corresponding match in SYNTHAX.

S Applications

5.1 Audio Representations

An advantage of synthesized sounds is that they also contain
the associated synthesis parameters. In self-supervised repre-
sentation learning problems, datasets that result from synthesis
can be used to formulate parameter prediction problems. For
instance, pitch recognition is a prominent auditory process-
ing problem for which synthesized datasets hold significant
promise. Recent work on audio representation learning has
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Figure 2: Results from performance evaluation, compared with torchsynth, on (Left) a 2017 iMac with an Intel Core i7-7700K
CPU @ 4.20GHz, and (Right) an NVIDIA Tesla V100 GPU. Values shown are averaged over 10 runs. We use the Voice
synthesizer in both SYNTHAX and trorchsynth, randomizing parameters each batch. (Top) Time to synthesize 100 batches
of sound at different batch sizes (given in seconds). (Middle) Time reinterpreted as speed x realtime, i.e. seconds of sound
generated per second of computation time (see @for details). (Bottom) Memory utilization in GB. Overall, SYNTHAX shows
significantly faster performance while retaining a similar memory utilization profile.
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Figure 3: A direct comparison showing speedups relative to torchsynth [2] per batch size, again for 100-batch total times
averaged across 10 runs. Error bars here show min/max results. Overall, SYNTHAX is more than double the speed in all cases,
and peaks at almost 9 the speed of the already accelerated forchsynth implementation. As previously, these results are on the
Voice synthesizer, a 78-parameter synthesizer, where parameters are randomized for each batch.
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Figure 4: Spectrograms for the examples in forchsynth (Top) and the replication in SYNTHAX (Bottom). From left to right,
we show a simple sine wave, a sine wave with an ADSR envelope modulating the frequency, a square wave, and an ADSR
envelope-modulated FM patch. The results show clear replication of the output spectrotemporal features.

employed the Surge XT pitch dataset [2] to evaluate representa- 5.2 The Synthesizer Programming Problem
tions on such a task [8, 9]]. Many other such prediction problems
could be formulated for both training and evaluation, as they
expose ground truth information as labels. A synthesizer can
generate a large variety of sounds that vary in timbre while
holding pitch constant, or conversely which vary in pitch but
hold timbre constant for a task such as instrument recognition.

One particular area where SYNTHAX can be useful is in the
synthesizer programming problem [10]], and specifically the
task of parameter inference [11]]. A canonical formulation of
this asks an algorithm to program a synthesizer to match a given
sound. The difficulties of manually programming complex syn-
thesizers are well-established [[12], and as such a variety of



techniques [13 14} [15} 16} {17} [18} 19, [11]] and even software
libraries [20]] have been developed to approach this through
the lens of automatic matching. Typically, algorithms used
are those common to other search and optimization problems,
such as genetic algorithms and even gradient-based optimizers.
Given a sound, these algorithms seek to minimize some mea-
sure (often perceptually-motivated) of the “distance” between
the target sound and a synthesized candidate by tweaking the
synthesis parameters. SYNTHAX can accelerate such appli-
cations by speeding up the synthesis, often the most costly
step in these problems. Additionally, SYNTHAX can be com-
bined with other parts of the pipeline written in JAX [1]] (such
as evosax [3]]) to provide a broader speedup for synthesizer
programming by matching target sounds.

6 Conclusion

In this paper, we presented SYNTHAX, a fast modular synthe-
sizer implemented in JAX. We showed that SYNTHAX gen-
erates sounds orders of magnitude faster than realtime, and
significantly faster than existing solutions to accelerated sound
synthesis. We discussed the possible applications of this synthe-
sizer in research and production problems involving intelligent
sound processing and synthesis. In the future, we intend to
expand it with more modules and a user interface. By open
sourcing this library, we invite contributions towards a high-
performance, robust, and well-documented synthesizer that we
hope will eventually parallel commercial software synthesizers
in the range of possible sounds producible, while retaining the
performance benefits which we observe in our experiments on
this initial implementation.
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